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Abstract

Speckle statistics for polychromatic light scattered from an optically rough reflector differ from the familiar exponential irradiance statistics found in monochromatic speckle.  We derive an analytic result for the polychromatic speckle irradiance contrast for a simple reflector geometry, as a function of the geometry parameters and the coherence or spectral density parameters of the incident light.  We then use this result to set up a quantitative test of WaveTrain’s “PartiallyCoherentReflector” module, whose purpose is to numerically simulate the behavior of polychromatic (narrow-band) light scattered from an optically rough reflector.
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1 Introduction

The purpose of WaveTrain’s “PartiallyCoherentReflector” (PCR) module is to numerically simulate the reflection of light from an optically rough surface, when the incident light has a finite longitudinal (temporal) coherence, or equivalently put, is polychromatic to a certain extent.  It is desired with the PCR numerical model to accurately simulate the propagation and speckle behavior when the longitudinal coherence varies over the domain from a few object macroscopic depths to a relatively small fraction of the macro-depth.  The most obvious qualitative effect of the finite coherence is to reduce the contrast of the rough-surface speckle observed in a receiver plane.  The reduction occurs because reflector points that are separated in macro-depth by more than the longitudinal coherence length will no longer produce stable interference:  rather, the irradiances due to those reflector points will simply add.  

Qualitatively, previous exercise of the PCR model showed that it certainly decreased speckle contrast, but the results had never been checked in any quantitative sense, specifically by comparison with analytically-derived results for a tractable geometry.  There are several questions that need exploration as far as the numerical simulation model is concerned.  Two key questions are:  (a) Does the PCR simulation model actually give quantitatively correct speckle behavior for different combinations of target geometry and coherence?   (b) How many “speckle realizations” are necessary to make the simulation model approach the correct statistics for given geometry/coherence parameters? 

The present paper has the following purposes:
(a)  We derive an analytic result for the speckle irradiance contrast for a simple reflector geometry, as a function of the geometry parameters and the coherence or spectral density parameters of the incident light.
(b)  We review the concept used by WaveTrain's PCR numerical model.
(c)  Using the results from (a), we set up a test case for checking the operation of the PCR wave-optics simulation model.   

2 Theoretical speckle contrast for a test case

2.1 Geometry and monochromatic irradiance

Consider the geometry shown in Figure 1.  Let the z axis be the nominal direction of the incident illumination, and let 
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 be the transverse coordinate.  The incident beam is scattered by an optically rough surface, which has an arbitrary orientation with respect to the axes.  Let the plane z = Z be a reference plane from which the surface depth function 
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 is measured.  This depth function refers only to the macroscopic surface shape, while the extra perturbation 
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, a random process, designates the surface micro-roughness.  We will begin with a spatially discrete model, using a single subscript to designate the two-dimensional grid point location.  We will use the equivalent notations 
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, and so forth as is convenient.  Let the plane z = 0 be the observation plane in which we want to compute speckle irradiance statistics.  For single-point statistics it is sufficient to consider one observation point, P, which we place at the origin.  
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Figure 1:  Scatter from an optically rough surface with depth profile

Our interest is in formulating the problem for polychromatic light, but we can build up that result by beginning with the more familiar monochromatic case.  The key starting point is a formula for the net complex field at the observation point P.  Using the discrete spot model of the surface, the net field at P can be expressed as the superposition of phasors that represent the phase lags from the reference plane to each discrete scatter point and then back to P.  Let the incident complex field at z = Z  (monochromatic, with wave number 
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The optical angular frequency factor written with 
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 means that we assume dispersion is insignificant for our problem.  (In purely monochromatic analysis, we typically drop the 
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be the physical path length from the reference plane to the scatter point and then to P, and let g be a geometry factor that represents the spread of the scattered light due to the back-propagation.  With these definitions, the net complex field at P is 
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Equation 
(2)

 is a discrete version of the Fresnel-Kirchoff diffraction integral.  We will also need an explicit decomposition for  gotobutton ZEqnNum577606  in terms of its several elements, namely
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The quadratic approximation of Equation (3)

 is consistent with the usual Fresnel approximation.  

Optical sensors are square-law devices that output a signal proportional to the time-average of the square of the electric field, where the averaging time is the response or integration time of the sensor.  We will use the symbol 
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 to represent this irradiance.  As shown in any general optics textbook, this time average for the monochromatic case turns out to be equivalent to the simple expression
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The only requirement for Equation (4)

 to hold is that



[image: image18.wmf])

(

1

)

(

frequency

 

optical

time

 

n

integratio

>>


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (5)
. 

2.2 Transition to the polychromatic case (finite bandwidth or finite longitudinal coherence)

The polychromatic field can be constructed from a Fourier superposition of monochromatic field terms defined in Equation (2)

:
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Next, we need an expression for the irradiance of the polychromatic field V.  Computing this requires careful specification of the nature of the k dependence in 
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.  Unless one has a special known source model, one considers the polychromatic field amplitude to be a random process in the k space.  To begin with, when we only deal with longitudinal coherence, it is useful to factor 
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where the  
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 applies to all the space points is the meaning of finite longitudinal coherence.  The factorization (7)

 yields
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where the second line defines the new symbol 
[image: image28.wmf])

(

~

k

U

.  


We now skip a few derivation details and assert that the irradiance of the V field, under a certain condition on the optical bandwidth, is given by
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The function S is called the spectral density, and the time-average overbar can alternately be viewed as an ensemble expectation value with respect to the ensemble of possible realizations of the spectral random process.  The key condition that leads to Equation (9)

 is that 
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The above mathematical model for polychromatic speckle follows the basic formulation given by Parry (
).

To reduce the future formula burden somewhat, we note that there is no loss of generality if we assume that S is normalized so that 
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In the cases of interest to us, 
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 is a relatively narrow function concentrated around some 
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2.3 Spatial moments of the irradiance


It is important to note that Equation 
(9)

 for the polychromatic irradiance  gotobutton ZEqnNum760379  has taken care of one random process present in the V field, namely the random fluctuations in magnitude and/or phase of the source field.  We are assuming, because of condition 
(10)

, that  gotobutton ZEqnNum906924  will not experience any noticeable temporal fluctuations due to the source random process (on the measurement time scale).  There remains, however, another random process in 
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 in the observation plane:  this is one realization of the polychromatic speckle.  Different realizations of 
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 across the observation plane.  We wish to compute a 1-point statistic, namely the spatial variance of the irradiance.  We will compute this from the ensemble moments 
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where the subscript emphasizes that this expectation value is with respect to the surface height random process only.  The final quantity of interest is actually the normalized irradiance variance (NIV), that is, [variance / mean2 ].  Alternatively, the “contrast” is usually defined as [standard deviation / mean] = 
[image: image44.wmf]NIV

.  Once we have 
[image: image45.wmf]h

I

 and 
[image: image46.wmf]h

I

2

, we can easily combine these to form the NIV or contrast.   


We said above that 
[image: image47.wmf]I

 has no measurable temporal fluctuations due to the source phase random process.  However, the width of the spectral density will still affect the calculation of the second spatial moment of 
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.  Qualitatively this comes about because Equation (9)

, for any given height realization, adds speckle irradiances corresponding to different wave numbers and these patterns are slightly displaced from one another and therefore smear the monochromatic contrast.

2.4 Evaluation of 
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Combining Equations (3)

, we have
(8)

 and (9)

, 


[image: image50.wmf](

)

ò

å

ò

-

÷

÷

ø

ö

ç

ç

è

æ

-

+

-

=

=

n

m

h

h

k

i

Z

d

d

k

i

n

m

n

m

h

h

n

m

n

m

n

m

e

e

u

u

R

R

g

k

S

dk

k

U

k

U

k

S

dk

I

,

2

4

2

0

0

2

*

2

2

*

)

(

)

(

~

)

(

~

)

(

r

r


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (13)

We can evaluate the expectation value factor containing the surface heights, if we assume that the heights are Gaussian, independent, identically distributed random variables.  This is the typical assumption made in the scatter spot model for speckle.  In that case, the expectation value becomes
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where 
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 is the surface height variance.  (The basic result for <exp(i*Gaussian)> is given, for example, in Goodman (
)).  


The factor 
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.  So, if the surface height standard deviation is of order 1 wavelength or more, the exp(…) factor is of order 
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 or less.  Substituting Equation (13)

 yields a result comprising two classes of terms, corresponding to the two sums in the following equation:
(14)

 into Equation 
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Using the fact that 
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(15)

 compared to the first (even though the second term contains  gotobutton ZEqnNum813539  summands, compared to the first term’s M summands).  Thus, 
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To obtain the second line of Equation 
(16)

, we used two facts:  gotobutton ZEqnNum813548  changes negligibly over the spectral bandwidth, and S is normalized according to Equation 
(16)

, it may now seem obvious from the standpoint of energy conservation.  We went through the trouble of showing the intermediate steps because manipulations of the same general type, but with more algebraic complications, will be used to obtain the second moment (11)

. Contemplating the result  gotobutton ZEqnNum199503 .  

2.5 Evaluation of 
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Using the same concepts employed earlier, we can evaluate the exponential expectation value (i.e., the last factor) in Equation 
(17)

.  Defining  gotobutton ZEqnNum760377 , we have



[image: image67.wmf]2

2

1

4

2

2

f

s

f

f

×

-

=

e

e

e

i

i


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (18)

The heights are assumed zero-mean and identically distributed.  Therefore the first factor in Equation 
(18)

 is simply 1, while in the second factor the variance of  gotobutton ZEqnNum199497  reduces to
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Writing 
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where 
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 is Kronecker’s delta,  Equation (19)

 can be conveniently rewritten as
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Consider now various possible cases of equality and inequality among {m, n, p, q}.  The various Kronecker deltas always take on the values 0 or 1.  The following list shows three particular combinations:
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The exponential factor at the far right of the preceding equations is what appears in Equation 
(23)

 before, when we evaluated (17)

.  We have met the exponential factor of case (18)

 and hence in the terms of the master Equation  gotobutton ZEqnNum577612 and we noted its miniscule size (recall Equation (22)

.  
(21)

 and (17)

 are cases (23)

.  Therefore, the only two terms that may substantially contribute to Equation (14)

 and the subsequent discussion).  Careful examination of all other subscript equality-inequality cases shows that all the cases not shown in the above list have the general character of case 
Using the results of the previous paragraph, Equation (17)

 reduces to
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Inspection of Equation (24)

, T1, is simply
(16)

 shows that the first term of Equation 
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To evaluate T2, we carry out the wave number integrations first.  Since the integrand depends only on (
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The new symbol 
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 in the last line of Equation 
(26)

 is the deterministic autocorrelation of  gotobutton ZEqnNum906925 , which appeared in the square brackets of the preceding line.  Note also that the last line of Equation 
(26)

 can be interpreted as an inverse Fourier transform, evaluated at the space variable  gotobutton ZEqnNum921483 , where 
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The full T2 term of Equation (24)

 is therefore 
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It is important to realize that the exponential factor 
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 in Equation 
(28)

 is a very different animal than the previously encountered factor  gotobutton ZEqnNum544347 , which we argued was negligible.  The reason is that 
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 is a difference wavenumber, which ranges over only a small increment around 0, whereas k was a wave number ranging over an increment around the average optical wave number.

2.6 NIV


Finally we can obtain our end goal, the speckle NIV, by combining the Equations (28)

 for T1 and T2:
(25)

 and 
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Formula (29)

 is almost as far as we can reduce the answer in general.  To proceed much further and obtain numerical answers, we must specify explicit functional forms for the spectral density function, the incident spatial field dependence, and the reflectance spatial dependence.  In the next section, we work out a numerical example that can be used for detailed testing of the WaveTrain PartiallyCoherentReflector module.


Before proceeding to a complete numerical example, there is actually one more approximation we can make that will frequently be very good, at least when the illuminator is a laser.  The factor 
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 will often be very nearly equal to 1, over the entire  gotobutton ZEqnNum760384  domain for which the spectral density (and hence the autocorrelation 
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Evidently, if 
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then 
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	1GHz / 3E14Hz = 3E-6
	1/(4 (1) = 8E-2

	
	1/(4 (100) = 8E-4

	1MHz / 3E14Hz = 3E-9
	1/(4 (1) = 8E-2

	
	1/(4 (100) = 8E-4


Table 1:  Numerical examples related to Equation (31)


From the tabulated examples, it seems that inequality (29)

 simplifies further to 
(31)

 will typically be satisfied for laser illumination.  When the inequality is satisfied, the NIV result 
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2.7 NIV evaluated numerically for specific functional forms

Consider the following example:

· 
The reflector is a rectangular plate with dimensions 
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 edges are parallel to the x axis, and the 
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 edges are tilted at angle 
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 with respect to the y axis (see Figure 2).  Therefore, the mean depth function of the plate is 
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Figure 2:  Tilted rectangular plate geometry
· The reflectance is uniform.

· The spatial dependence of the incident field is a plane wave with wave vector along z.

· The spectral density function has a Gaussian shape, given by
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Note the bandwidth 
[image: image115.wmf]k
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 is defined as the 1/e2 half-width, and 
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 is area-normalized to 1.

· The bandwidth 
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 satisfies Equation (32)

.
(31)

, so that NIV is given by Equation 
Evaluation of the spectral autocorrelation and Fourier transform required by the NIV formula yields
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Finally, we substitute this into Equation 
(32)

 by an area integral.  It is convenient to express the support domain of the reflectance factors by using the rectangle function (32)

 it was convenient to use a spatially discrete model for the random surface (Goodman’s “scatter-spot” model).  But, at the present stage it is more convenient to transition to a continuum model.  This means replacing each sum in Equation (32)

 and compute the remaining sums.  When we derived Equation  gotobutton ZEqnNum199502 .  The numerator of Equation (32)

 then becomes 
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Now we make a final approximation:  except for plate tilts 
[image: image121.wmf]0
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q

, the quadratic terms in the real exponential of the preceding integral are completely negligible compared to the linear terms.  In that case, the x integrals become trivial, and the y integrals can be simplified by changing to sum and difference coordinates.  The final result is the simple expression 
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where the triangle function 
[image: image123.wmf])

tri(
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 is 1 at  t = 0 and drops linearly to 0 at 
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.  This final integral must be evaluated numerically, and the result is shown as the red solid curve in Figure 3.
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Figure 3:  Speckle NIV for the tilted rectangular plate, when illumination has finite bandwidth


The NIV depends only on the product parameter 
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, where 
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 is simply the total depth of the plate (the actual length and tilt only enter as the combination 
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).  Recall also that NIV is actually not exactly 1 when 
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= 0, since we have neglected the quadratic terms in Equation 
(35)

.  When  gotobutton ZEqnNum577619  is large enough, the Gaussian factor in Equation 
(36)

 is very narrow compared to the triangle factor.  In that asymptotic case, the integral can be evaluated analytically, and we find that  gotobutton ZEqnNum813549 .  Smoothly merging the two asymptotes with an empirical joining function, we can obtain a simple semi-empirical formula that accurately represents the computed results over the whole domain (see the dots in  Figure 3):



[image: image132.wmf]2

1

2

1

1

-

ú

ú

û

ù

ê

ê

ë

é

÷

ø

ö

ç

è

æ

+

»

z

L

D

NIV

k

p

  
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (37)

Notice that NIV decreases quite slowly, proportional to 
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.  The contrast decreases even more slowly, proportional to 
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To see what the NIV or contrast numbers are for a few laser bandwidths, consider sources with bandwidths of 
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 for the two cases.  From Figure 3 or Equation (37)

, the NIV for the two cases is 0.993 and 0.0084, while the contrast is 0.996 and 0.092 . 

2.7.1 Coherence length


Since the wave number superposition was fundamental in the theoretical analysis, the spectral density width 
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 was a natural width measure to use in our development of the NIV result.  But there is another bandwidth measure that frequently arises in experimental practice, namely the “coherence length”, 
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, of the illuminator.  Coherence length is typically measured via fringe visibility in a Michelson interferometer setup.  The coherence length is defined as the path-length difference that reduces fringe visibility from 1 to some specified level.  Since coherence length in this sense is frequently used or specified to characterize sources, it is important to relate this quantitatively to the 
[image: image144.wmf]k

D

 width measure.  It can be shown that the fringe visibility as a function of path length difference is the Fourier transform of the spectral density function.  Therefore, for the Gaussian spectral density in our numerical example, i.e., Equation 
(33)

, the visibility function is also Gaussian, and the 1/e2 coherence length is related to  gotobutton ZEqnNum760388  (which was also a 1/e2 width) by the exact relation 
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With this result for coherence length, we can rewrite Equation (37)

 as
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When 
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.  If we assume a qualitative model in which the scatter from successive "coherence depths" adds incoherently, then the proportionality 
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 can be derived very simply from the addition of independent random variables.  This provides a check on the rather complicated derivation leading to Equations (39)

(36)

 and 
From Equation 
(38)

, the two bandwidths gotobutton ZEqnNum577624  and 
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 for which we computed NIV and contrast in the previous subsection correspond to 
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2.7.2 Cautionary comments
The precise numerical values of the breakpoints in the NIV Equations 
(39)

 depend on the assumption of Gaussian spectral density.  For a different spectral shape, say a Lorentzian, these breakpoints will be somewhat different, although the asymptotic slopes are most likely the same.  In practice, when a source is said to have a certain coherence length, it is often murky at best whether a 1/e2 or ½ or some other visibility level is meant.  With lasers, the situation is often also complicated by the fact that the shape of the visibility function is not an analytically simple form.  In practice then, we expect the proportionality (37)

 and  gotobutton ZEqnNum577621  indicated by Equation (39)

, but the exact proportionality factor will be in doubt.  
3 Review of WaveTrain's “PartiallyCoherentReflector” numerical model 

WaveTrain's PCR simulation model works directly with a space-time statistical representation of the partially coherent illumination.  The simulation procedure does not exactly parallel the spectral superposition approach that we used in Section 2 to work out a theoretical NIV.  However, the space-time approach should be equivalent:  if we use corresponding spectral density functions or temporal correlation functions, then the simulation calculation should yield results identical to what we computed theoretically in Section 2.  
WaveTrain's PCR model works as follows.  Consider the sketch in Figure 4.  The curved line represents an optically rough reflecting surface, which is illuminated by a wave traveling paraxially in the z direction.  
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Figure 4:  Simulation of rough-surface reflection with partial longitudinal coherence

The PCR concept is an elaboration of the method used to treat the scattering of completely coherent illumination.  For completely coherent light (WaveTrain's "CoherentTarget" module), we represent the reflected complex field that exits the discrete mesh in the 
[image: image159.wmf]0
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 reference plane as 
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where 
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 is the incident complex field, 
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 is a spatially uncorrelated phase, 
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 is an intensity reflectance map, and  is a radiometric normalization factor required because of our discrete Fourier Transform methods (the  factor is discussed in other documentation, and is not specifically a PCR property).  The mod-2  values of are assumed for practical purposes to be uniformly distributed over (0, 2).  This model (
, 
) is sometimes called the scatter-spot model.  In this basic model, the deterministic depth map has no effect on the statistical properties of the scattered light recorded in the receiver plane, and is ignored in the formalism.  Now consider a beam with finite longitudinal coherence.  Most cases of interest are still "quasi-monochromatic", such that the slowly-varying envelope (SVE) representation is a useful mathematical device.  The incident field is described by
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where 
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, and U  is the slowly-varying complex envelope factor.  In general, WaveTrain operates only on the U  factor, and does not keep track of the “carrier” phasor  
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.  In most WaveTrain operations, the t dependence of U arises only from turbulence and/or relative component motion.  However, in the PCR model, we explicitly construct a space-time representation of the SVE envelope:  this envelope is notionally pictured at one instant as the irregular wave in the Figure 4 sketch.  The first key operation of the PCR model is to construct one instantaneous realization of the partially-coherent SVE envelope factor 
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The realization 
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 is then propagated away from the 
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 plane towards the receiver using the same Fourier methods as for any completely coherent field.  One such realization would give the same statistical properties (fully-developed speckle) at the receiver as the basic coherent-illumination (CoherentTarget) model described by Equation 
(40)

.  To obtain the desired partially coherent result, we now repeat the propagation step with a sequence of  gotobutton ZEqnNum813553  realizations of 
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where 
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} are the three SVE-related user inputs of the PCR model.  When the 
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 realizations are propagated to the receiver plane, this procedure represents an actual temporal sequence of complex fields that a receiver would experience due to the SVE illumination.  The temporal sequence of irradiance patterns at the receiver plane consists of speckle patterns that are somewhat shifted (and distorted) from one another.  Finally, the PCR model assumes that the response time of the sensor is slow enough so that only the average irradiance over the 
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 realizations is reported by the sensor.  If 
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 sufficiently samples all the correlation lengths contained within the target macro-depth 
[image: image191.wmf]z

L

, then this discretely-computed average should exhibit the speckle contrast reduction appropriate to the specified combination of coherence length and target macro-depth.

Figure 5 may help to clarify the required combination of parameters that provides sufficient sampling for validity of the PCR algorithm.  The key parameters in question are the SVE-related input parameters {
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, and 
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}.  The curved line in Figure 5, with known total depth 
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, represents the rough reflecting surface.
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Figure 5:  Choosing consistent parameters for the WaveTrain PCR model

The distance 
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 is the length (in meters) of the space-time realization of the SVE random process.  This realization is generated by an algorithm that produced a periodic realization, so we recommend setting 
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 = 2
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.  If we sample the SVE envelope at least several times per correlation length, we should sufficiently resolve that variation to model any variations in the resulting speckle pattern.  We express this requirement as 
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Next, consider the distance labeled 
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 in Figure 5.  This depth increment corresponds to the projection of the propagation mesh spacing 
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onto the reflecting surface, where 
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 is the local inclination of the surface with respect to the y-axis.  The sketch shows a y-z projection, but there is an analogous projection for x-z.  Again, in order for the numerical procedure to sample the SVE correlation length interacting with the surface, we should have 
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 less than some fraction of 
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In sum, given {
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 and 
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}, inequality 
(44)

 guides us in selecting the remaining SVE parameter  gotobutton ZEqnNum199509 .  Inequality  
(45)

 can be viewed as a constraint on the propagation mesh, or on the inclination of the target that can be accurately modeled.  For a complex target,  gotobutton ZEqnNum760393  will be a complicated variable quantity, and it may not be necessary to satisfy inequality  
(45)

, due to the "(several)" factor and the potential complexity of (44)

 and  (45)

 everywhere, as long as the violating areas return insignificant power.  At this point, there is some lack of precision about the constraints   gotobutton ZEqnNum760393 .
4 Comparison of theory with a numerical simulation using WaveTrain's  “PartiallyCoherentReflector” model 
The case of the tilted rectangular plate and Gaussian spectral density, for which we worked out numerical details from theory in Section 2.7, can be set up in WaveTrain as a test of the PartiallyCoherentReflector (PCR) module.  

Let us choose the following WaveTrain propagation parameters for our PCR test system:

· 0 turbulence,  
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· Reflector square of size 
[image: image218.wmf]m

m

L

L

1

1

´

=

´

, inclined from y-axis at 
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=0, 10, 30, and 80 deg (see Figure 2).
This is implemented with two types of PCR input maps (WaveTrain “Grids”):
(a) A depth map for each 
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(b) A reflectance map for each 
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· The PCR module has an input parameter called “coherenceLength”.  This coherence length is a 1/e2 length, where the visibility (or correlation) function is Gaussian.  Therefore, the PCR “coherenceLength” should correspond precisely to  
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 as defined in the preceding theoretically-based numerical example.  If we let 
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= 0.50, 0.10, 0.02 m, then Equation 
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 tells us that the specified combination of   gotobutton ZEqnNum577622  and 
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 parameters should correspond to the range of NIV tabulated in Table 2.  Notice that the range of speckle contrast that we obtain from the parameter domain in the table is only one order of magnitude, while the range of NIV is two orders of magnitude.  
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	0
	0
	1
	1
(1)
	1
(1)
	1
(1)

	10
	0.174
	0.985
	0.77
(0.88)
	0.23
(0.48)
	0.051
(0.23)

	30
	0.500
	0.866
	0.38
(0.62)
	0.089
(0.30)
	0.018
(0.13)

	80
	0.985
	0.174
	0.21
(0.46)
	0.045
(0.21)
	0.0090
(0.095)


Table 2:  Expected range of speckle NIV spanned by the WaveTrain test inputs

· The final key input parameter in the PCR module is “nWaves”.  This is the parameter denoted 
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 in the conceptual overview Section 3.  We performed test runs for 
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= 20 and 100.  In the discussion of results below, we will relate these values to the inequality requirements discussed at the end of Section 3.
· Sensor parameters in the WaveTrain receiver plane:  
We want to compute the speckle irradiance in the simulated observation plane for each combination of the test parameters.  To make a valid comparison between theory and simulation, we must bear in mind several artifacts that arise in the simulated Fourier transform propagation on a discrete, finite mesh.  
(i)  The first item to consider is peculiar to the case of propagation from an optically rough source plane, where the transverse phase has a spatially uncorrelated term distributed over (0, 2).  In a physical experiment this light would have a wide divergence, but on the discrete Fourier transform mesh the light from each mesh point only diverges by an amount limited by the propagation mesh spacing, as sketched in Figure 6. The consequence is that the scattering model is only valid in the overlap region indicated in Figure 6 by the segment labeled 
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:  in this region, all discrete source points that comprise the specified reflector contribute to the net light field, as they would in a physical experiment.  When we compute the speckle statistics, we must limit ourselves to a region of interest (ROI) in the receiver plane that is no wider than 
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.  From Figure 6, we deduce that the width of the uniform region is
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Figure 6:  ROI over which average irradiance is uniform, indicated by Luni in the sketch
The smallest 
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(ii)  The second item to consider is this:  if we want to compute NIV spatially over the receiver plane, then 
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 should contain many speckles.  Stated another way, 
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 should contain many intensity correlation lengths.  If this condition is violated, we could still compute NIV temporally, across many independent simulation runs, but this would much more tedious.  The typical monochromatic speckle size that is expected is approximately
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For our test parameter set, the two extreme situations are:
     (a)  At the 0-deg inclination angle, 
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     (b)  At the 80-deg inclination angle, 
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Therefore, in our 
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 ROI, we can expect roughly 
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 speckles for case (a), and roughly 
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 speckles for case (b).  There are actually two points to be made here.  As we noted initially, computing a spatial irradiance variance over the ROI should be unbiased in the sense that the ROI spans many correlation lengths.  Second, the estimation error for the irradiance variance depends on the number of independent samples, as well as on the irradiance PDF.  The number of independent samples may be somewhat marginal for the 
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 speckles case, so it is probably desirable to repeat the WaveTrain propagations for, say, 8 realizations of the rough surface and pool the irradiance data to compute NIV.

4.1 Comparison of theory and WaveTrain PCR simulation: results

Results for the two 
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 cases are collected in  Figure 7 and Figure 8.  The solid red line in each figure is the theoretical curve previously plotted in Figure 3, and the symbols are PCR-simulated results for the various combinations of coherence length and plate tilt (where plate tilt controls the macro-depth of the target, as tabulated in Table 2).  The horizontal-axis plot variable is 
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:  according to the theory in Section 2, the NIV should only depend on this dimensionless ratio.  Inspecting the plot for 
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 = 100 (Figure 7), we see that the match between theory and PCR simulation is good except at the largest plate tilt of 80 deg.  These results are completely consistent with the PCR parameter guidelines developed at the end of Section 3 (inequalities  
(45)

).  For example, when (44)

 and   gotobutton ZEqnNum199509  = 2 cm and 
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 = 80 deg, inequality  
(45)

 tells us that we should have dxy < (0.35/several) cm.  The actual dxy of the propagation mesh used for all runs was 1.4 cm, a gross violation of the constraint, so as expected the agreement between theory and PCR simulation is poor for this parameter combination.  On the other hand,  when  gotobutton ZEqnNum760393  = 2 cm and 
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 = 30 deg, inequality  Figure 7(45)

 tells us that we should have dxy < (3.46/several) cm.  In this case, the actual dxy=1.40 cm marginally satisfies the constraint, and indeed we see in the plot that theoretical and simulated NIV agree fairly well.  Similar consistency checks can be made for the other data points in   gotobutton ZEqnNum760393  and Figure 8.  The fact that the simulated results diverge from truth just when we begin to violate certain parameter constraints gives us further confidence that we correctly understand the operation of the simulation module.
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Figure 7:  Theoretical and PCR-simulated results for NIV, for nWaves (Nw) = 100
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Figure 8:  Theoretical and PCR-simulated results for NIV, for nWaves (Nw) = 20

5 Summary

We have carried out a quantitative test of the WaveTrain module "PartiallyCoherentReflector" (PCR).  This rather complex module simulates the reflection of partially coherent illumination from an optically-rough reflector.  For an analytically tractable geometry, we developed a theoretical formula for the normalized irradiance variance (NIV) expected at a receiver plane after scattering from the rough surface.  We then simulated scattering from that geometry using the WaveTrain PCR.  Over the tested range of NIV, we found good agreement between theory and WaveTrain simulation, when validity constraints on the simulation parameters were satisfied. 
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